MIDTERM 1 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Know how to:

- Given a graph or given a formula, find values of a function, and solve equations such as: Find x such that $f(x)=2$ (1.1.1)
- Determine if a graph is a graph of a function (1.1.6)
- Sketch graphs of functions representing real-life situations (1.1.14, 1.1.18)
- Find domains and ranges of functions, given a graph or given a formula (1.1.30, 1.1.32, Quiz 1.1-2)
- Solve word problems (1.1.57, 1.3.55, Quiz 1.5)
- Know how to draw graphs of linear functions, power functions (e.g. x^{3} or \sqrt{x}), and exponential functions (e.g. 3^{x}) (1.2.4)
- Use the above functions in word problems (1.2.15)
- Graph new functions from old ones, e.g. given f, graph $f(-x)(1.3 .5,1.3 .6)$
- Explain, for example, how you can get the graph of $-f(x+2)+3$ given the graph of f (1.3.2, 1.3.3, Quiz 1.3)
- Compose, add, multiply, and divide functions and find their domains (1.3.33, 1.3.39)
- Compositions represent in real-life situations (1.3.55)
- Find domains of functions involving e^{x}, e.g. Find the domain of $\frac{e^{x}}{1+e^{x}}(1.5 .15)$
- Determine whether a function is one-to-one, given its graph (1.6.6), or given a formula (1.6.9, 1.6.10)
- Find the inverse of a function, given its graph, i.e. reflect about the line $y=x$ (1.6.29, 1.6.30)
- Find the inverse of a function, given a formula (1.6.25, 1.6.26)
- Know what $f^{-1}(4)$ actually means (1.6.17)
- Do computations with \ln and logs, and simplifying expressions involving \ln and logs (1.6.33, 1.6.36, 1.6.39)
- Find average velocities of a function, given a table or given a formula, and estimate instantaneous velocities (2.1.6, 2.1.7)
- Find the limit of a function at a point or at infinity (or say that it does not exist) and vertical/horizontal asymptotes of a function given its graph (2.2.7, 2.2.9, 2.6.3)
- Sketch the graph of a function with given limits (2.2.15, 2.6.7)
- Given 2 graphs of f and g, finding limits of $f+g$, $f \times g$, etc. (2.3.2)
- Evaluating a limit of a function at a point (or showing that it does not exist), given its equation:
- By substituting into the expression (2.3.3, 2.3.5)
- By noticing, for example, that it's of the form $\frac{1}{0^{+}}$(and hence it's $+\infty$) (2.2.25, 2.2.28)
- By noticing that the left-hand limit and the right-hand limit are equal, or not equal, if the limit does not exist (2.3.39, 2.3.40, 2.3.45) Good for piecewisedefined functions!
- By factoring the numerator/denominator, and by 'canceling out' (2.3.11, 2.3.15, also look at 2.3.61)
- By multiplying numerator and denominator by $\sqrt{a}-b$, whenever you see something involving $\sqrt{a}+b(2.3 .21,2.3 .22,2.3 .23,2.3 .30,2.3 .60)$
- By using the squeeze theorem (2.3.37, 2.3.38)
- Evaluating a limit of a function at infinity (or showing that it does not exist) and stating its asymptotes, given its equation:
- By substituting into the expression (2.6.15)
- By factoring out the highest power of the numerator, and the highest power of the denominator $(2.6 .16,2.6 .19,2.6 .21$, also 2.6 .33$)$, or simply the highest power of the expression (2.6.31)
- By multiplying numerator and denominator by $\sqrt{a}-b$, whenever you see something involving $\sqrt{a}+b(2.6 .25,2.6 .26,2.6 .27)$
- By factoring out the highest power of the square root, when the preceding method fails (2.6.23, 2.6.24)
- By noticing that the function is bigger than or smaller than a familiar function whose limit you know (2.6.30)
- Finding limits rigorously, using an $\epsilon-\delta$-argument (2.4.19, 2.4.22, 2.4.29, 2.4.30, 2.4.31, 2.4.32, 2.3.36, 2.3.37)
- Find left-hand-side and right-hand-side limits rigorously, using an epsilon-delta argument (2.4.28)
- Find infinite limits rigorously, using an epsilon-delta argument (2.4.42, 2.4.44)
- Find limits at infinity rigorously, using an epsilon-delta argument (2.6.65, 2.6.67) (This includes infinite limits at infinity!) Note: Be careful! Sometimes you may have a problem that does not involve ϵ explicitly! (look at $2.6 .13,2.6 .14$)
- Given a graph, state the numbers at which the function is continuous or not (2.5.3)
- Given a formula, show that a function is continuous at a point (2.5.43)
- Given a formula, find the numbers at which a function is discontinuous (2.5.37, 2.5.39)
- Using the intermediate value theorem to show that an equation has a root, or that two functions are equal at a point $(2.5 .47,2.5 .51)$
- Solving word problems using the intermediate value theorem (2.5.65)
- Calculate the derivative of a given function at a given point, using the definition of a derivative (2.7.25, 2.7.27, 2.7.30)
- Recognize a certain limit as a derivative of a function (2.7.31, 2.7.34, 2.7.36)
- Find the equation of the tangent line to the graph of a given function at a given point (2.7.10)
- Know what a derivative means in real life, in particular find the instantaneous velocity of a particle at a given time (2.7.37, 2.7.38, 2.7.46)

Also, know how to define the following terms / state the following theorems (remember that for functions, you'll need to state the domain and the codomain of that function!):

- Function
- Domain of f
- Range of f
- Absolute Value Function
- Increasing/Decreasing
- Vertical line test
- e
- 2^{x} (more generally a^{x})
- $f \circ g(f$ composed with $g)$
- Inverse function
- $\ln (x)$ (more generally $\log _{a}(x)$)
- $\log _{r}(2)$ (just say it's the number y such that $r^{y}=2$)
- $\lim _{x \rightarrow a} f(x)=L$ (the rigorous definition), as well as its variants $\lim _{x \rightarrow a^{+}} f(x)=$ $L, \lim _{x \rightarrow a} f(x)=+/-\infty$, and $\lim _{x \rightarrow+/-\infty} f(x)=L, \lim _{x \rightarrow+/-\infty} f(x)=$ $+/-\infty$
- Vertical/Horizontal asymptote
- The Squeeze Theorem
- f is continuous at a (and its variant with left/right-continuous)
- f is continuous on an interval I
- The Intermediate Value Theorem
- The derivative of f at a, i.e. $f^{\prime}(a)$ (both definitions: the limit-definition, and the tangent-line definition)
- The tangent line to $y=f(x)$ at $P=(a, f(a))$

